Physics Admissions Test

Paper 1 Solutions

(2)

Assume gravitational field strength $g=10~{\rm Nkg^{-1}}$ and that resistive forces are negligible unless stated otherwise. Values of fundamental constants will be given in the questions where they are required. Non - graphical calculators are permitted.

Questions: 24 Total Marks: 100

1. For what values of α does the equation $\csc^2(\theta) + \alpha \cot(\theta) = 0$ have multiple distinct real solutions, for $0 < \theta < \pi$?

A	В	С	D	Е
$\alpha < -2$	$\alpha \le -4 \text{ or } \alpha \ge 4$	$\alpha < -2 \text{ or } \alpha > 2$	$\alpha < -4 \text{ or } \alpha > 4$	$-4 < \alpha < 4$

Solution: C: $\alpha < -2$ or $\alpha > 2$. Simply a quadratic question in disguise, use pythagoras to find a quadratic in $\cot \theta$, and then enforce a positive discriminant for two solutions.

$$\csc^{2}(\theta) + \alpha \cot(\theta) = 0$$
$$\cot^{2}(\theta) + \alpha \cot(\theta) + 1 = 0$$
$$\cot(\theta) = -\frac{\alpha}{2} \pm \frac{\sqrt{\alpha^{2} - 4}}{2}$$

2. The Rydberg formula describes the energy levels of the hydrogen atom, where n is the quantum number for each level.

 $E_n = -\frac{13.6\text{eV}}{n^2}$

The H_{α} emission line is commonly used in astrophysics to identify regions of active star formation. It has a wavelength of 658nm. Which atomic transition is responsible for the H_{α} line?

A	В	C	D	E
$n=3\rightarrow 4$	$n=3\rightarrow 2$	$n=2\rightarrow 3$	$n=3\rightarrow 1$	$n=4\rightarrow 3$

 $c = 3 \times 10^8 \text{ ms}^{-1}, \ e = 1.6 \times 10^{-19} \text{ C}, \ h = 6.63 \times 10^{-34} \text{ m}^2 \text{kgs}^{-1}$

Solution: B: $n = 3 \to 2$. Equating the change in E_n to $\frac{hc}{\lambda}$ gives n = 3, 2 as the pair of levels that work. Make sure to choose the emission, rather than absorption, transition.